15-112 Fundamentals of Programming

Lecture 4 - Language basics

Examples

Dprint (3 * 2)
Dprint (3 + 2)
Dprint ("abc" + "def")
Dprint (3 + "def")
Dprint 2+3*4
Dprint 9**1/2
Dprint 9**1/2
Dprint ("20/3 =", (20//3))
Dprint (" 6/3 =", (6/3))

More Examples

$\square \mathrm{a}=5$ print (a)
Dprint ($5<8$)
Dprint ($8<5$)
Dprint (8 == 8)

More Examples

\square print (8!=8)
$\square a=5$
b $=6$
print (a < b)
Dprint (5/0)
Dprint (0/5)

Variables in Expressions

-Assign value to a variable

- age = 21
-Change a variables value
age $=21$
print ("You are", age * 12 , " months old") age $=$ age +1
print ("You will be ", age * 12, "months after 1 year")

Variables in Expressions

radius $=3.1$
pi $=22 / 7$
area $=$ pi * radius**2
print (area)

Operations

\square Bitwise operators

- \& (Bitwise AND)
- | (Bitwise OR)
- ^(Bitwise XOR)
- <<
- >>

Bitwise Operators: Examples

- 6 \& 5
-6|5
- $6^{\wedge} 5$
- $6 \ll 1$
- $6 \ll 2$
- $6 \gg 1$

More Examples

\square print (1 <<2)
$\square \mathrm{a}=5$ print (a \& 4)
Dprint ($5^{\wedge} 7$)

Let's work out a problem

DWrite a program that reads current temperature from the user in Fahrenheit and prints the equivalent Celsius value.

Another Example

DWrite a program that reads an integer from the user and prints the sum of its digits.

Operator Precedence

\square Operator precedence (highest to lowest):

- **
- Positive, negative, NOT (+x, -x, $\sim x$)
- *, /, \%
- +,-
- >>, <<
- \& (Bitwise AND)
- ^ (Bitwise XOR)
- | (Bitwise OR)
\square Operators with same precedence are processed left to right

Operator Precedence Examples
 Dprint (3 + 4*2 + 5)

Dprint (3 * 2 + $2 / 5$)

Dprint (-2 ** 4 + 8 >> 2)

Approximating Floats

What is the output of the following code?

$$
\begin{aligned}
& \mathrm{d} 1=0.1+0.1+0.1 \\
& \mathrm{~d} 2=0.3 \\
& \operatorname{print}(\mathrm{~d} 1=\mathrm{d} 2)
\end{aligned}
$$

Short Circuit Evaluation

Let's try the following code:

$$
\begin{aligned}
& x=0 \\
& y=0 \\
& \operatorname{print}((y==0) \text { or }((x / y)==0)) \\
& \operatorname{print}((y!=0) \text { and }(x / y==0)) \\
& \operatorname{print}(((x / y)==0) \text { or }(y==0))
\end{aligned}
$$

Short Circuit Evaluation

-How about:

$$
\begin{aligned}
& x=0 \\
& y=0 \\
& \operatorname{print}((y>0) \text { and }((x / y)==0)) \\
& \operatorname{print}((y==0) \text { and }((x / y)==0))
\end{aligned}
$$

Strings

DAny sequence of characters enclosed within " " or " is a string

- "This is a string"
- 'this is also a string'
- "this is not a string - can you guess why?'
- '7his 1s a \$tring'
-"\%^\%\$\#@!***\&\& - what did you say?"

Indexing and Slicing

-USed to manipulate information in a string
name $=$ "Chris Myers"

0	1	2	3	4	5	6	7	8
9	10							
C	h	r	i	s		M	y	e
r	s							

print name[2:4]
print name[:4]
print name [3:]
print name[:]

Math functions

\square print math.sqrt(5) Does not work
\square import math print math.sqrt(5)
Dmath. $\log (x[$, base])
Dmath.cos(x)
Umath.sin (x)
Dmath.tan(x)
Dmath.pi
besotumberat
Dmath.e

ord and chr functions

Dord

- A function that will return the ASCII value of a character
$\square \mathrm{Chr}$
- A function to convert ASCII value to character
\square Examples!

Functions

DFunction is a way of packaging a group of instructions that perform a specific task
DFunctions abstract out the "what" from the "how"

- When we use a function, we worry about "What" does the function do and NOT "how" it does it.
- When we write a function we worry about the "how".

Functions that do something

DSome functions just perform a task def doSomething():
print("CMU Rocks!")

DHow would you use this function
doSomething() doSomething()

Functions that act on input

\square Some functions perform a tasks on values that you give them

- printSquare - A function that takes a number and prints its square
- How will you use this function?
printSquare (2)
printSquare (3)
- How will you define this function?
def printSquare (x) : print x, "**2 $=$ ", (x^{*} x)

Function definition

def SomeName (Input parameters if any): Function Body
Function Body
Function Body

Using Functions

DA function has to be defined before it can be used!

DA complete example - funtest.py
def printSquare (x):
print $x, \quad " * * 2=",(x * x)$
printSquare(2)
printSquare (3)
 CarnegieMellonQatar

Functions - multiple parameters

- Functions can take several parameters
def printSum (x, y): print x, "+", y, "=", x+y
printSum $(2,3)$
printSum $(3,4)$

Functions with return values

DFunctions can return values

```
def square(x):
        return x*x
print square(3)
print square(4)
a = square(3) + square(4)
print a
```


Carnegie MellonQaatar

print vs return

-What does print do?
-What does return do?

A more complex example

\square Write a program that reads the number of eggs bought by a customer and based on this input, determines how many cartons of eggs the customer would need. We can fit 12 eggs in one carton.

More Exercises

DisEvenPositivelnt(x)

DisLegalTriangle(s1, s2, s3)
DrectanglesOverlap(left1, top1, width1, height1, left2, top2, width2, height2)

